Advent of Code 2023-25a

import networkx as nx 
import matplotlib.pyplot as plt 
import re
floppy = open("input25.txt", mode='r', encoding='utf-8')
thing =  floppy.readlines()
floppy.close()
sourcenode = []

for i, word in enumerate(thing):
    sourcenode.append(word[0:3])
    thing[i] = word[4:].split()

visual = []
for i, source in enumerate(sourcenode):
    for dest in thing[i]:
        visual.append([source,dest])
G = nx.Graph()
G.add_edges_from(visual)

nx.draw_networkx(G) 
plt.show()
import networkx as nx 
import matplotlib.pyplot as plt 

G = nx.Graph()
G.add_edges_from([['a','b'],['b','c'],['a','c'],['s','u']])
nx.draw_networkx(G) 
plt.show()

Balloon Code V3

import os
import picamera
import serial
import time
import board
import adafruit_bmp280
import RPi.GPIO as GPIO


GPIO.setwarnings(False)
#GPIO.setmode(GPIO.BOARD)
GPIO.setup(18, GPIO.OUT, initial=GPIO.LOW)

i2c = board.I2C()
bmp = adafruit_bmp280.Adafruit_BMP280_I2C(i2c)
bmp.sea_level_pressure = 1013.25

camera = picamera.PiCamera()
camera.resolution = (1280, 720)
camera.rotation = 180
framerate = 5
camera.framerate = framerate
camera.annotate_text_size = 18

gps = "GPS Data"
gpsPort = "/dev/ttyACM0"
gpsSerial = serial.Serial(gpsPort, baudrate = 9600, timeout = 0.5)

def getPicture(annotation):
    filename = "/home/pi/Pictures/" + str(time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) + ".jpg"

    try:
        camera.start_preview()
        time.sleep(2.5)
        camera.annotate_text = annotation
        camera.capture(filename)
        camera.stop_preview()
    except Exception as error:
        return(error)
       
        camera.stop_preview()

    return filename

def getVideo(length):
    filename = "/home/pi/Videos/" + str(time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())) + ".mp4"
   
    try:
        camera.start_recording("/home/pi/testVideo.h264")

        for index in range(length):
            start = time.time()

            camera.annotate_text = (annotate())
           
            end = time.time()
           
            elapsed = start - end

            if elapsed <= 1:
                time.sleep(1 - elapsed)
       
        camera.stop_recording()
    except Exception as error:
        return(error)

    os.system("ffmpeg -r " + str(framerate) + " -i /home/pi/testVideo.h264 -vcodec copy " + filename)
    os.system("del /home/pi/testVideo.h264")
   
    return filename

def gpgga():
    output = ""
    emailgps = ""
    try:
        n = 1
        while output == "" and n<50:
            gps = str(gpsSerial.readline())
            #print(n)
            if (gps[2:8] == "$GPGGA" or gps[2:8] == "$GNGGA"):
                gps = gps.split(",")
                #lat long formatted for digital maps
                latgps = gps[2][0:2] + ' ' + gps[2][2:]
                longgps = '-'+gps[4][1:3] + ' ' + gps[4][3:]
                emailgps = latgps+','+longgps

                latDeg = int(gps[2][0:2])
                latMin = int(gps[2][2:4])
                latSec = round(float(gps[2][5:9]) * (3/500))
                latNS = gps[3]
                output += "Latitude: " + str(latDeg) + " deg " + str(latMin) + "'" + str(latSec) + '" ' + latNS + "\n"
               
                longDeg = int(gps[4][0:3])
                longMin = int(gps[4][3:5])
                longSec = round(float(gps[4][6:10]) * (3/500))
                longEW = gps[5]
                output += "Longitude: " + str(longDeg) + " deg " + str(longMin) + "'" + str(longSec) + '" ' + longEW + "\n"
               
                alt = float(gps[9])
                output += "Altitude: " + str(alt) + " m" + "\n"

                sat = int(gps[7])
                output += "Satellites: " + str(sat)
            n+=1
        return [output,emailgps]
    except Exception as error:
        return ["",""]

def gprmc():
    output = ""
   
    try:
        n = 1
        while output == "" and n<50:
            #print(n)
            gps = str(gpsSerial.readline())
           
            if gps[2:8] == "$GPRMC" or gps[2:8] == "$GNRMC":
                gps = gps.split(",")

                output = ""

                speed = round(float(gps[7]) * 1852)/1000
                output += "Speed: " + str(speed) + " km/h"
            n+=1
        return output
       
    except Exception as error:
        return("")

def gps():
    try:
        output = gpgga()[0] + "\n" + gprmc()
        return output
    except Exception as error:
        return("")

def accurate_altitude():
    try:
        output = 'BMP280 Altitude: {} m'.format(round(bmp.altitude))
        return output
    except Exception as error:
        return("")

def annotate():
    timeNow = str(time.strftime("%a %d %b %Y %H:%M:%S", time.localtime()))
    locationNow = gps()
    bmpa = accurate_altitude()
    annotation = timeNow + "\n" + locationNow + "\n" + bmpa
    return annotation


def flyBalloon():
    while True:
        try:      
            getVideo(10) #40
            GPIO.output(18, GPIO.HIGH)
            getPicture("")
            getPicture(annotate())
            GPIO.output(18,GPIO.LOW)
        except Exception as error:
            return(error)

flyBalloon()

Prim’s Algorithm Maze Generation

&lt;/div&gt;
# Maze generator -- Randomized Prim Algorithm

## Imports
import random
import time
from colorama import init
from colorama import Fore, Back, Style

## Functions
def printMaze(maze):
	for i in range(0, height):
		for j in range(0, width):
			if (maze[i][j] == 'u'):
				print(Fore.WHITE + str(maze[i][j]), end=" ")
			elif (maze[i][j] == 'c'):
				print(Fore.GREEN + str(maze[i][j]), end=" ")
			else:
				print(Fore.RED + str(maze[i][j]), end=" ")
			
		print('\n')

# Find number of surrounding cells
def surroundingCells(rand_wall):
	s_cells = 0
	if (maze[rand_wall[0]-1][rand_wall[1]] == 'c'):
		s_cells += 1
	if (maze[rand_wall[0]+1][rand_wall[1]] == 'c'):
		s_cells += 1
	if (maze[rand_wall[0]][rand_wall[1]-1] == 'c'):
		s_cells +=1
	if (maze[rand_wall[0]][rand_wall[1]+1] == 'c'):
		s_cells += 1

	return s_cells


## Main code
# Init variables
wall = 'w'
cell = 'c'
unvisited = 'u'
height = 11
width = 27
maze = []

# Initialize colorama
init(convert=True)

# Denote all cells as unvisited
for i in range(0, height):
	line = []
	for j in range(0, width):
		line.append(unvisited)
	maze.append(line)

# Randomize starting point and set it a cell
starting_height = int(random.random()*height)
starting_width = int(random.random()*width)
if (starting_height == 0):
	starting_height += 1
if (starting_height == height-1):
	starting_height -= 1
if (starting_width == 0):
	starting_width += 1
if (starting_width == width-1):
	starting_width -= 1

# Mark it as cell and add surrounding walls to the list
maze[starting_height][starting_width] = cell
walls = []
walls.append([starting_height - 1, starting_width])
walls.append([starting_height, starting_width - 1])
walls.append([starting_height, starting_width + 1])
walls.append([starting_height + 1, starting_width])

# Denote walls in maze
maze[starting_height-1][starting_width] = 'w'
maze[starting_height][starting_width - 1] = 'w'
maze[starting_height][starting_width + 1] = 'w'
maze[starting_height + 1][starting_width] = 'w'

while (walls):
	# Pick a random wall
	rand_wall = walls[int(random.random()*len(walls))-1]

	# Check if it is a left wall
	if (rand_wall[1] != 0):
		if (maze[rand_wall[0]][rand_wall[1]-1] == 'u' and maze[rand_wall[0]][rand_wall[1]+1] == 'c'):
			# Find the number of surrounding cells
			s_cells = surroundingCells(rand_wall)

			if (s_cells < 2):
				# Denote the new path
				maze[rand_wall[0]][rand_wall[1]] = 'c'

				# Mark the new walls
				# Upper cell
				if (rand_wall[0] != 0):
					if (maze[rand_wall[0]-1][rand_wall[1]] != 'c'):
						maze[rand_wall[0]-1][rand_wall[1]] = 'w'
					if ([rand_wall[0]-1, rand_wall[1]] not in walls):
						walls.append([rand_wall[0]-1, rand_wall[1]])


				# Bottom cell
				if (rand_wall[0] != height-1):
					if (maze[rand_wall[0]+1][rand_wall[1]] != 'c'):
						maze[rand_wall[0]+1][rand_wall[1]] = 'w'
					if ([rand_wall[0]+1, rand_wall[1]] not in walls):
						walls.append([rand_wall[0]+1, rand_wall[1]])

				# Leftmost cell
				if (rand_wall[1] != 0):	
					if (maze[rand_wall[0]][rand_wall[1]-1] != 'c'):
						maze[rand_wall[0]][rand_wall[1]-1] = 'w'
					if ([rand_wall[0], rand_wall[1]-1] not in walls):
						walls.append([rand_wall[0], rand_wall[1]-1])
			

			# Delete wall
			for wall in walls:
				if (wall[0] == rand_wall[0] and wall[1] == rand_wall[1]):
					walls.remove(wall)

			continue

	# Check if it is an upper wall
	if (rand_wall[0] != 0):
		if (maze[rand_wall[0]-1][rand_wall[1]] == 'u' and maze[rand_wall[0]+1][rand_wall[1]] == 'c'):

			s_cells = surroundingCells(rand_wall)
			if (s_cells < 2):
				# Denote the new path
				maze[rand_wall[0]][rand_wall[1]] = 'c'

				# Mark the new walls
				# Upper cell
				if (rand_wall[0] != 0):
					if (maze[rand_wall[0]-1][rand_wall[1]] != 'c'):
						maze[rand_wall[0]-1][rand_wall[1]] = 'w'
					if ([rand_wall[0]-1, rand_wall[1]] not in walls):
						walls.append([rand_wall[0]-1, rand_wall[1]])

				# Leftmost cell
				if (rand_wall[1] != 0):
					if (maze[rand_wall[0]][rand_wall[1]-1] != 'c'):
						maze[rand_wall[0]][rand_wall[1]-1] = 'w'
					if ([rand_wall[0], rand_wall[1]-1] not in walls):
						walls.append([rand_wall[0], rand_wall[1]-1])

				# Rightmost cell
				if (rand_wall[1] != width-1):
					if (maze[rand_wall[0]][rand_wall[1]+1] != 'c'):
						maze[rand_wall[0]][rand_wall[1]+1] = 'w'
					if ([rand_wall[0], rand_wall[1]+1] not in walls):
						walls.append([rand_wall[0], rand_wall[1]+1])

			# Delete wall
			for wall in walls:
				if (wall[0] == rand_wall[0] and wall[1] == rand_wall[1]):
					walls.remove(wall)

			continue

	# Check the bottom wall
	if (rand_wall[0] != height-1):
		if (maze[rand_wall[0]+1][rand_wall[1]] == 'u' and maze[rand_wall[0]-1][rand_wall[1]] == 'c'):

			s_cells = surroundingCells(rand_wall)
			if (s_cells < 2):
				# Denote the new path
				maze[rand_wall[0]][rand_wall[1]] = 'c'

				# Mark the new walls
				if (rand_wall[0] != height-1):
					if (maze[rand_wall[0]+1][rand_wall[1]] != 'c'):
						maze[rand_wall[0]+1][rand_wall[1]] = 'w'
					if ([rand_wall[0]+1, rand_wall[1]] not in walls):
						walls.append([rand_wall[0]+1, rand_wall[1]])
				if (rand_wall[1] != 0):
					if (maze[rand_wall[0]][rand_wall[1]-1] != 'c'):
						maze[rand_wall[0]][rand_wall[1]-1] = 'w'
					if ([rand_wall[0], rand_wall[1]-1] not in walls):
						walls.append([rand_wall[0], rand_wall[1]-1])
				if (rand_wall[1] != width-1):
					if (maze[rand_wall[0]][rand_wall[1]+1] != 'c'):
						maze[rand_wall[0]][rand_wall[1]+1] = 'w'
					if ([rand_wall[0], rand_wall[1]+1] not in walls):
						walls.append([rand_wall[0], rand_wall[1]+1])

			# Delete wall
			for wall in walls:
				if (wall[0] == rand_wall[0] and wall[1] == rand_wall[1]):
					walls.remove(wall)


			continue

	# Check the right wall
	if (rand_wall[1] != width-1):
		if (maze[rand_wall[0]][rand_wall[1]+1] == 'u' and maze[rand_wall[0]][rand_wall[1]-1] == 'c'):

			s_cells = surroundingCells(rand_wall)
			if (s_cells < 2):
				# Denote the new path
				maze[rand_wall[0]][rand_wall[1]] = 'c'

				# Mark the new walls
				if (rand_wall[1] != width-1):
					if (maze[rand_wall[0]][rand_wall[1]+1] != 'c'):
						maze[rand_wall[0]][rand_wall[1]+1] = 'w'
					if ([rand_wall[0], rand_wall[1]+1] not in walls):
						walls.append([rand_wall[0], rand_wall[1]+1])
				if (rand_wall[0] != height-1):
					if (maze[rand_wall[0]+1][rand_wall[1]] != 'c'):
						maze[rand_wall[0]+1][rand_wall[1]] = 'w'
					if ([rand_wall[0]+1, rand_wall[1]] not in walls):
						walls.append([rand_wall[0]+1, rand_wall[1]])
				if (rand_wall[0] != 0):	
					if (maze[rand_wall[0]-1][rand_wall[1]] != 'c'):
						maze[rand_wall[0]-1][rand_wall[1]] = 'w'
					if ([rand_wall[0]-1, rand_wall[1]] not in walls):
						walls.append([rand_wall[0]-1, rand_wall[1]])

			# Delete wall
			for wall in walls:
				if (wall[0] == rand_wall[0] and wall[1] == rand_wall[1]):
					walls.remove(wall)

			continue

	# Delete the wall from the list anyway
	for wall in walls:
		if (wall[0] == rand_wall[0] and wall[1] == rand_wall[1]):
			walls.remove(wall)
	


# Mark the remaining unvisited cells as walls
for i in range(0, height):
	for j in range(0, width):
		if (maze[i][j] == 'u'):
			maze[i][j] = 'w'

# Set entrance and exit
for i in range(0, width):
	if (maze[1][i] == 'c'):
		maze[0][i] = 'c'
		break

for i in range(width-1, 0, -1):
	if (maze[height-2][i] == 'c'):
		maze[height-1][i] = 'c'
		break

# Print final maze
printMaze(maze)

Recipe Hax

Hello Hacker Gentlemen.

Below are the 3 pieces of code we have at the moment.  Your task is to edit the allrecipes.py code to make it more useful.  At current, it creates an enormous list of completely unsorted recipes, and is functionally equivalent to throwing a box with thousands of recipe cards into a pile on the floor.  You are now going to add some sorting to this to make it more useful.  In total, your changes will probably be no more than 2-3 lines of code in allrecipes.py.  Use regular expressions to, for example, create a separate text file for recipes that contain the word “pie” in the title.  That is just one possibility, the sorting criteria is entirely up to you!  If you would like to review/finish the lessons on the regex website, click here.

import re
#re stands for regular expressions
sentence = "The rain in Spain ComPLaiN, 8ain ain't 5ai9t ai"
# 01234567891111111
# 0123456

x = re.search("ai", sentence)

print(x.span())
# . is the metacharacter for any character (except for newline)
#[a-z] represents any lower case alpha character
#[A-Z] represents any upper case alpha character
#[0-9] represents any numeric character
#\w represents "word" characters, a-z, A-Z, 0-9, _ underscore
#\W represents anything that is NOT a "word" character
#\s string contains a whitespace character (space, tab, newline, return, feed)
#\S anything that is not a whitespace character
#* represents any number of the thing it follows
x = re.findall('[\w]*ai[\w]*',sentence)
print(x)
import requests, time, re
from recipe_scrapers import scrape_me
f = open("last_recipe_checked.txt",'rt')
content = f.readlines()  
start = int(content[-1])
f.close()
currentrecipe = start
def main():    
    validrecipes = []
    for i in range(start,9999999):
        f = open("last_recipe_checked.txt",'w')########
        f.write(str(i)+'\n')########
        f.close() ########
        url = 'https://cooking.nytimes.com/recipes/' + str(i)
        time.sleep(0.25)
        if requests.get(url).status_code == 200:
            currentrecipe = i
            recipe = scrape_me(url,wild_mode = True)
            print(recipe.title(),i)
            f = open("nytimesrecipes.txt","at")
            f.write(recipe.title() + "     " + url + '\n')
            f.close()
            validrecipes += [i]
if (__name__ == "__main__"):
    main()
 import requests, time
import requests, time
import shutil
from recipe_scrapers import scrape_me
url = 'https://cooking.nytimes.com/recipes/103'
recipe = scrape_me(url,wild_mode = True)
image_url = recipe.image()
file_name = recipe.title() + ' image.jpg'
res = requests.get(image_url, stream = True)
if res.status_code == 200:
    with open(file_name,'wb') as f:
        shutil.copyfileobj(res.raw, f)
    print('Image sucessfully Downloaded: ',file_name)
else:
    print('Image Couldn\'t be retrieved')
##################################################
from fpdf import FPDF
pdf = FPDF(orientation='P', unit = 'in', format = 'letter')
pdf.add_page()
pdf.set_xy(0.0,0.0)
pdf.set_font('Arial','B',16)
pdf.set_text_color(0,0,0)
pdf.cell(w=8.5,h=1.0, align = 'C', txt = recipe.title(), border = 0)
pdf.image(file_name, x = 2.75, y = 1, w = 3, h = 3, type = 'jpg', link = '')
pdf.set_font('Arial','',12)
pdf.set_text_color(0,0,0)
x = 4
for ingredient in recipe.ingredients():
    pdf.cell(w=3.5,h=.25, align = 'L', txt = ingredient, border = 0)
    x += 0.25
    pdf.set_xy(1.0,x)
x+=1
pdf.set_xy(1.0,x)
pdf.multi_cell(w=7,h=0.25, align = 'L', txt = recipe.instructions(), border = 0)
pdf.output(file_name+'.pdf','F')

Training a Perceptron

import time
#runs scored per game
rsg = [4.26,4.75,4.19,4.52,4.28,4.36,4.41,4.39,4.54,3.24,4.49,3.82,3.92,5.19,3.99,4.67,4.56,4.66,
       5.34,3.44,4.63,3.57,4.37,4.06,4.62,4.61,4.13,4.55,4.86,3.85]
#runs allowed per game
rag = [4.6,3.98,4.25,4.74,4.94,4.58,5.33,4.26,5.31,4.4,3.37,5.06,4.28,3.28,4.27,4.23,4.29,3.74,3.29,
       4.5,4.12,5.04,4.07,3.85,4.36,4,3.93,4.47,4.29,5.45]

#is you winner or loser?
#I have included .500 teams as winner (you're welcome Chicago White Sox)
#1 means your team is losing (should be above the line), 0 means your team is winning (below the line)
w = [1,0,0,1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0,0,1,0,0,1,0,1]
teams = ['Arizona Diamondbacks','Atlanta Braves','Baltimore Orioles','Boston Red Sox','Chicago Cubs',
         'Chicago White Sox','Cincinnati Reds','Cleveland Guardians','Colorado Rockies','Detroit Tigers',
         'Houston Astros','Kansas City Royals','Los Angeles Angels','Los Angeles Dodgers','Miami Marlins',
         'Milwaukee Brewers','Minnesota Twins','New York Mets','New York Yankees','Oakland Athletics',
         'Philadelphia Phillies','Pittsburgh Pirates','San Diego Padres','Seattle Mariners',
         'San Francisco Giants','St. Louis Cardinals','Tampa Bay Rays','Texas Rangers','Toronto Blue Jays',
         'Washington Nationals']


#winner runs scored
winner_rsg = []
#loser runs scored
loser_rsg = []
#winner runs allowed
winner_rag = []
#loser runs allowed
loser_rag = []

#now separate all the data into 2 sets: winners and losers
for i in range(len(rsg)):
    if w[i] > 0:
        loser_rsg += [rsg[i]]
        loser_rag += [rag[i]]
    else:
        winner_rsg += [rsg[i]]
        winner_rag += [rag[i]]

import matplotlib.pyplot as plt
speed = 0.5 #how many seconds in between graphs
#draw a scatter plot of actual winners and losers as of 7/31/2022
def draw_scatter():
    for i, label in enumerate(teams):
        plt.annotate(label, (rsg[i]+0.02, rag[i]+0.02))
    plt.title("Separating Winning Teams By Runs Allowed and Scored")
    plt.xlabel("Runs Scored/Game")
    plt.ylabel("Runs Allowed/Game")
    plt.scatter(winner_rsg, winner_rag)
    plt.scatter(loser_rsg, loser_rag)
    plt.legend(['Winning Teams','Losing Teams'])

plt.ion()
draw_scatter()
x = list(range(30,55,1))
x = [data/10 for data in x]

#starting coefficients
#coefficients = [w0, w1, w2]

#you can basically start these coefficients with any random numbers because you haven't even looked a team yet
coeff = [0, 1, 0.5]
#now we will graph the first hypothesized line based on just a random guess
y = [(coeff[1]*data -1*coeff[0])/coeff[2] for data in x]
plt.plot(x,y) #use a line graph
plt.draw()    #draw the graph
plt.pause(speed)  #wait 1 second
plt.clf()     #clear the graph

n = 0.2 #this number determins how much the graph changes when you find a new point to classify

#now we are going to go through the real data points for all 30 of the teams
for i in range(len(rsg)):
    pointvalue = coeff[1]*rag[i] + coeff[2]*rsg[i] + coeff[0] * 1
    #these are the 2 options for properly classified points, so d = 1
    if (w[i] == 1 and pointvalue > 1) or (w[i] == 0 and pointvalue < 1):
        d = 1
    #these are the 2 options for misclassified points, so d = -1
    if (w[i] == 0 and pointvalue > 1) or (w[i] == 1 and pointvalue < 1):
        d = -1
    #if d=-1, we have found a misclassified point, so we will update the list of coefficients for the new point
    if d == -1:
        coeff[0] = coeff[0] + n * d * 1
        coeff[1] = coeff[1] + n * d * rag[i]
        coeff[2] = coeff[2] + n * d * rsg[i]
        #now replot the dividing line
        y = [(coeff[1]*data -1*coeff[0])/coeff[2] for data in x]
        draw_scatter()
        plt.plot(x,y)
        plt.draw()
        plt.pause(speed)
        #only clear if you aren't on the final data point
        if i != len(rsg)-1:
            plt.clf()
       
print(coeff)