Still Brainstorming FLL Combined Underwater Sensors

#include "OneWire.h"
#include <SoftwareSerial.h>
unsigned char buffer_RTT[4] = {0};
uint8_t CS;
#define COM 0x55
int Distance = 0;
SoftwareSerial mySerial(7, 8); 
int DS18B20_pin = 2; //DS18B20 Signal pin on digital 2
#include "Wire.h"
#define address 0x23
//tempature chip i/o
OneWire ds(DS18B20_pin); // on digital pin 2
void setup(void) {
  Serial.begin(9600);
  mySerial.begin(115200);
  Wire.begin();
}
uint8_t buf[4] = {0};
uint16_t thing, data1;
float Lux;
void loop(void) {
  delay(1000);
  float temperature = getTemp();
  Serial.print("Temp in degrees C:");
  Serial.println(temperature);

////////////////////////////////ULTRASONIC
  //delay(100); //just here to slow down the output so it is easier to read
  mySerial.write(COM);
  //delay(100);
  //Serial.println(mySerial.available());
  if(mySerial.available() > 0){
    delay(4);
    //Serial.print("i got here"); 
    if(mySerial.read() == 0xff){
         
      buffer_RTT[0] = 0xff;
      for (int i=1; i<4; i++){
        buffer_RTT[i] = mySerial.read();   
      }
      CS = buffer_RTT[0] + buffer_RTT[1]+ buffer_RTT[2];  
      if(buffer_RTT[3] == CS) {
        //7.5 is added to distance to compensate for the ultrasonic being 7.5 mm below the water surface
        Distance = (buffer_RTT[1] << 8) + buffer_RTT[2] +7.5;
        Serial.print("Distance:");
       // Distance = Distance + 7.5;
        Serial.print(Distance);
        Serial.println("mm");
        //Serial.println();
      }
    }
  }

  ///////////////////////AMBIENT LIGHT SENSOR
  readReg(0x10, buf, 2);
  thing = buf[0] << 8  | buf [1];
  Lux = (((float)thing )/1.2);
  Serial.print("Lux:");
  Serial.print (Lux);
  //Serial.print("lx");
  Serial.print("\n");
  delay(500);

}

float getTemp(){
  //returns the temperature from one DS18B20 in DEG Celsius

  byte data[12];
  byte addr[8];

  if ( !ds.search(addr)){
      //no more sensors on chain, reset search
      ds.reset_search();
      return -1000;
  }

  if ( OneWire::crc8( addr, 7) !=addr[7]) {
      Serial.println("CRC is not valid!");
      return -1000;
  }

  ds.reset();
  ds.select(addr);
  ds.write(0x44,1); // start onversion, with parasite power on at the end
  byte present = ds.reset();
  ds.select(addr);
  ds.write(0xBE); // Read Scratchpad

  for (int i = 0; i < 9; i++){ // we need 9 bytes
    data[i] = ds.read();
  }

  ds.reset_search();

  byte MSB = data[1];
  byte LSB = data[0];

  float tempRead = ((MSB << 8) | LSB); //using two's compliment
  float TemperatureSum = tempRead / 16;

  return TemperatureSum;
  
  
  
}

uint8_t readReg(uint8_t reg, const void* pBuf, size_t size)
{
  if(pBuf == NULL) {
    Serial.println("pBuf ERROR!! : null pointer");
  }
  uint8_t * _pBuf =(uint8_t *)pBuf;
  Wire.beginTransmission(address);
  Wire.write(&reg, 1);
  if ( Wire.endTransmission() != 0) {
    return 0;
  }
  delay(20);
  Wire.requestFrom(address, (uint8_t) size);
  for (uint16_t i = 0; i < size; i++) {
    _pBuf[i] = Wire.read();
  }
  return size;
};
/*
Copyright (c) 2007, Jim Studt

Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains.  In any event that was..
    (copyleft) 2006 by Derek Yerger - Free to distribute freely.

The CRC code was excerpted and inspired by the Dallas Semiconductor 
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY,  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/

#include "OneWire.h"

extern "C" {

#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#endif

#include <avr/io.h>
#include "pins_arduino.h"
}


OneWire::OneWire( uint8_t pinArg)
{
    pin = pinArg;
    port = digitalPinToPort(pin);
    bitmask =  digitalPinToBitMask(pin);
    outputReg = portOutputRegister(port);
    inputReg = portInputRegister(port);
    modeReg = portModeRegister(port);
#if ONEWIRE_SEARCH
    reset_search();
#endif
}

//
// Perform the onewire reset function.  We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset() {
    uint8_t r;
    uint8_t retries = 125;

    // wait until the wire is high... just in case
    pinMode(pin,INPUT);
    do {
	if ( retries-- == 0) return 0;
	delayMicroseconds(2); 
    } while( !digitalRead( pin));
    
    digitalWrite(pin,0);   // pull low for 500uS
    pinMode(pin,OUTPUT);
    delayMicroseconds(500);
    pinMode(pin,INPUT);
    delayMicroseconds(65);
    r = !digitalRead(pin);
    delayMicroseconds(490);
    return r;
}

//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v) {
    static uint8_t lowTime[] = { 55, 5 };
    static uint8_t highTime[] = { 5, 55};
    
    v = (v&1);
    *modeReg |= bitmask;  // make pin an output, do first since we
                          // expect to be at 1
    *outputReg &= ~bitmask; // zero
    delayMicroseconds(lowTime[v]);
    *outputReg |= bitmask; // one, push pin up - important for
                           // parasites, they might start in here
    delayMicroseconds(highTime[v]);
}

//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit() {
    uint8_t r;
    
    *modeReg |= bitmask;    // make pin an output, do first since we expect to be at 1
    *outputReg &= ~bitmask; // zero
    delayMicroseconds(1);
    *modeReg &= ~bitmask;     // let pin float, pull up will raise
    delayMicroseconds(5);          // A "read slot" is when 1mcs > t > 2mcs
    r = ( *inputReg & bitmask) ? 1 : 0; // check the bit
    delayMicroseconds(50);        // whole bit slot is 60-120uS, need to give some time
    
    return r;
}

//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power) {
    uint8_t bitMask;
    
    for (bitMask = 0x01; bitMask; bitMask <<= 1) {
	OneWire::write_bit( (bitMask & v)?1:0);
    }
    if ( !power) {
	pinMode(pin,INPUT);
	digitalWrite(pin,0);
    }
}

//
// Read a byte
//
uint8_t OneWire::read() {
    uint8_t bitMask;
    uint8_t r = 0;
    
    for (bitMask = 0x01; bitMask; bitMask <<= 1) {
	if ( OneWire::read_bit()) r |= bitMask;
    }
    return r;
}

//
// Do a ROM select
//
void OneWire::select( uint8_t rom[8])
{
    int i;

    write(0x55,0);         // Choose ROM

    for( i = 0; i < 8; i++) write(rom[i],0);
}

//
// Do a ROM skip
//
void OneWire::skip()
{
    write(0xCC,0);         // Skip ROM
}

void OneWire::depower()
{
    pinMode(pin,INPUT);
}

#if ONEWIRE_SEARCH

//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
    uint8_t i;
    
    searchJunction = -1;
    searchExhausted = 0;
    for( i = 7; ; i--) {
	address[i] = 0;
	if ( i == 0) break;
    }
}

//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned.  If a new device is found then
// its address is copied to newAddr.  Use OneWire::reset_search() to
// start over.
// 
uint8_t OneWire::search(uint8_t *newAddr)
{
    uint8_t i;
    char lastJunction = -1;
    uint8_t done = 1;
    
    if ( searchExhausted) return 0;
    
    if ( !reset()) return 0;
    write( 0xf0, 0);
    
    for( i = 0; i < 64; i++) {
	uint8_t a = read_bit( );
	uint8_t nota = read_bit( );
	uint8_t ibyte = i/8;
	uint8_t ibit = 1<<(i&7);
	
	if ( a && nota) return 0;  // I don't think this should happen, this means nothing responded, but maybe if
	// something vanishes during the search it will come up.
	if ( !a && !nota) {
	    if ( i == searchJunction) {   // this is our time to decide differently, we went zero last time, go one.
		a = 1;
		searchJunction = lastJunction;
	    } else if ( i < searchJunction) {   // take whatever we took last time, look in address
		if ( address[ ibyte]&ibit) a = 1;
		else {                            // Only 0s count as pending junctions, we've already exhasuted the 0 side of 1s
		    a = 0;
		    done = 0;
		    lastJunction = i;
		}
	    } else {                            // we are blazing new tree, take the 0
		a = 0;
		searchJunction = i;
		done = 0;
	    }
	    lastJunction = i;
	}
	if ( a) address[ ibyte] |= ibit;
	else address[ ibyte] &= ~ibit;
	
	write_bit( a);
    }
    if ( done) searchExhausted = 1;
    for ( i = 0; i < 8; i++) newAddr[i] = address[i];
    return 1;  
}
#endif

// This table comes from Dallas sample code where it is freely reusable, though  Copyright (C) 2000 Dallas Semiconductor Corporation
static uint8_t dscrc_table[] = {
      0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
    157,195, 33,127,252,162, 64, 30, 95,  1,227,189, 62, 96,130,220,
     35,125,159,193, 66, 28,254,160,225,191, 93,  3,128,222, 60, 98,
    190,224,  2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
     70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89,  7,
    219,133,103, 57,186,228,  6, 88, 25, 71,165,251,120, 38,196,154,
    101, 59,217,135,  4, 90,184,230,167,249, 27, 69,198,152,122, 36,
    248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91,  5,231,185,
    140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
     17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
    175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
     50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
    202,148,118, 40,171,245, 23, 73,  8, 86,180,234,105, 55,213,139,
     87,  9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
    233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
    116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};

//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers.  (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls.  But I got
// confused, so I use this table from the examples.)  
//
uint8_t OneWire::crc8( uint8_t *addr, uint8_t len)
{
    uint8_t i;
    uint8_t crc = 0;
    
    for ( i = 0; i < len; i++) {
	crc  = dscrc_table[ crc ^ addr[i] ];
    }
    return crc;
}

#if ONEWIRE_CRC16
static short oddparity[16] = { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };

//
// Compute a Dallas Semiconductor 16 bit CRC. I have never seen one of
// these, but here it is.
//
unsigned short OneWire::crc16(unsigned short *data, unsigned short len)
{
    unsigned short i;
    unsigned short crc = 0;
    
    for ( i = 0; i < len; i++) {
	unsigned short cdata = data[len];
	
	cdata = (cdata ^ (crc & 0xff)) & 0xff;
	crc >>= 8;
	
	if (oddparity[cdata & 0xf] ^ oddparity[cdata >> 4]) crc ^= 0xc001;
	
	cdata <<= 6;
	crc ^= cdata;
	cdata <<= 1;
	crc ^= cdata;
    }
    return crc;
}
#endif
#ifndef OneWire_h
#define OneWire_h

#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#endif

#include <inttypes.h>

// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif

// You can exclude onewire_crc16 by defining that to 0
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 0
#endif

class OneWire
{
  private:
#if ONEWIRE_SEARCH
    uint8_t address[8];
    char searchJunction;
    uint8_t searchExhausted;
#endif
    uint8_t pin;
    uint8_t port;
    uint8_t bitmask;
    volatile uint8_t *outputReg;
    volatile uint8_t *inputReg;
    volatile uint8_t *modeReg;

  public:
    OneWire( uint8_t pin);
    
    // Perform a 1-Wire reset cycle. Returns 1 if a device responds
    // with a presence pulse.  Returns 0 if there is no device or the
    // bus is shorted or otherwise held low for more than 250uS
    uint8_t reset();

    // Issue a 1-Wire rom select command, you do the reset first.
    void select( uint8_t rom[8]);

    // Issue a 1-Wire rom skip command, to address all on bus.
    void skip();

    // Write a byte. If 'power' is one then the wire is held high at
    // the end for parasitically powered devices. You are responsible
    // for eventually depowering it by calling depower() or doing
    // another read or write.
    void write( uint8_t v, uint8_t power = 0);

    // Read a byte.
    uint8_t read();

    // Write a bit. The bus is always left powered at the end, see
    // note in write() about that.
    void write_bit( uint8_t v);

    // Read a bit.
    uint8_t read_bit();

    // Stop forcing power onto the bus. You only need to do this if
    // you used the 'power' flag to write() or used a write_bit() call
    // and aren't about to do another read or write. You would rather
    // not leave this powered if you don't have to, just in case
    // someone shorts your bus.
    void depower();

#if ONEWIRE_SEARCH
    // Clear the search state so that if will start from the beginning again.
    void reset_search();

    // Look for the next device. Returns 1 if a new address has been
    // returned. A zero might mean that the bus is shorted, there are
    // no devices, or you have already retrieved all of them.  It
    // might be a good idea to check the CRC to make sure you didn't
    // get garbage.  The order is deterministic. You will always get
    // the same devices in the same order.
    uint8_t search(uint8_t *newAddr);
#endif

    // Compute a Dallas Semiconductor 8 bit CRC, these are used in the
    // ROM and scratchpad registers.
    static uint8_t crc8( uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
    // Compute a Dallas Semiconductor 16 bit CRC. Maybe. I don't have
    // any devices that use this so this might be wrong. I just copied
    // it from their sample code.
    static unsigned short crc16(unsigned short *data, unsigned short len);
#endif

};

#endif