int joyPin1 = A0; // slider variable connected to analog pin 0 int joyPin2 = A1; // slider variable connected to analog pin 1 int value1 = 0; // variable to read the value from the analog pin 0 int value2 = 0; // variable to read the value from the analog pin 1 void setup() { pinMode(joyPin1, INPUT); pinMode(joyPin2, INPUT); Serial.begin(9600); } void loop() { value1 = analogRead(joyPin1); value2 = analogRead(joyPin2); delay(100); Serial.print("Pin1: "); Serial.print(value1); Serial.print(" Pin2: "); Serial.println(value2); }
Category Archives: source code
LED Images from the Shapeshifters
Arduino Serial Demo
void setup() { Serial.begin(9600); } int i = 1; void loop() { Serial.println("Each line of code will be delayed by 1 second"); delay(1000); Serial.println("Also, integer i will count upwards by one!"); delay(1000); Serial.println(i); i = i+1; }
Building a NOT Gate
Geometry Formulas for EMCC
Rules of Inference
Area of an N-Sided Regular Polygon
Natas4
username: natas4
password: Z9tkRkWmpt9Qr7XrR5jWRkgOU901sw EZ
Raspberry Pi Zero Header
RSA Encryption
woE7ewVfwoAzbwXCgC5iMyRvBTvCgGBiOy4=
public key: e=5, n=133
import random import base64 ''' Euclid's algorithm to determine the greatest common divisor ''' def gcd(a,b): while b != 0: c = a % b a = b b = c return a def egcd(a, b): if a == 0: return (b, 0, 1) g, y, x = egcd(b%a,a) return (g, x - (b//a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('No modular inverse') return x%m def encrypt(plaintext,keypair): e,n = keypair # Encrypt the plaintext cipher = ''.join([chr(pow(ord(char),e,n)) for char in plaintext]) # Encode the ciphertext so it's more readable/sharable encoded = base64.b64encode(cipher.encode('utf-8')) return str(encoded,'utf-8') def decrypt(ciphertext,keypair): d,n = keypair # Decode the text to the original format decoded = base64.b64decode(ciphertext).decode('utf-8') # Decrypt it plain = (str(chr(pow(ord(char),d,n))) for char in decoded) return ''.join(plain) def generate_keypair(p,q,e=None): n = p * q #Phi is the totient of n phi = (p-1)*(q-1) #Choose an integer e such that e and phi(n) are coprime if e is None: e = random.randrange(1, phi) #Use Euclid's Algorithm to verify that e and phi(n) are comprime g = gcd(e, phi) while g != 1: e = random.randrange(1, phi) g = gcd(e, phi) #Now find the multiplicative inverse of e and phi to generate the private key d = modinv(e, phi) return ((e,n),(d,n)) #Only run this part if we're not running as an imported module if __name__ == '__main__': p = int(input("Enter prime number p: ")) q = int(input("Enter prime number q: ")) public, private = generate_keypair(p,q) print("Your public key is the number pair of (e=" + str(public[0]) + ", n=" + str(public[1]) +").\n") print("Your private key is the number pair of (d=" + str(private[0]) + ", n=" + str(private[1]) +").\n") s = input("Enter your message: ") encrypted = encrypt(s,public) print("Encrypted message: " + encrypted) decrypted = decrypt(encrypted,private) print("Decrypt: " + decrypted)