Arduino Joystick Demo

 


 int joyPin1 = A0;                 // slider variable connected to analog pin 0
 int joyPin2 = A1;                 // slider variable connected to analog pin 1
 int value1 = 0;                  // variable to read the value from the analog pin 0
 int value2 = 0;                  // variable to read the value from the analog pin 1

 void setup() {
  pinMode(joyPin1, INPUT);              
  pinMode(joyPin2, INPUT); 
  Serial.begin(9600);
 }

 void loop() {
  value1 = analogRead(joyPin1);             
  value2 = analogRead(joyPin2);  

  delay(100);
  Serial.print("Pin1: ");
  Serial.print(value1);
  Serial.print(" Pin2: ");
  Serial.println(value2);
}

Source.

Arduino Serial Demo

void setup() {
  Serial.begin(9600);
}
int i = 1;
void loop() {
  Serial.println("Each line of code will be delayed by 1 second");
  delay(1000);
  Serial.println("Also, integer i will count upwards by one!");
  delay(1000);
  Serial.println(i);
  i = i+1;
}

RSA Encryption

woE7ewVfwoAzbwXCgC5iMyRvBTvCgGBiOy4=
public key: e=5, n=133
import random
import base64

'''
Euclid's algorithm to determine the greatest common divisor
'''
def gcd(a,b):
    while b != 0:
        c = a % b
        a = b
        b = c
    return a

def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    g, y, x = egcd(b%a,a)
    return (g, x - (b//a) * y, y)

def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('No modular inverse')
    return x%m

def encrypt(plaintext,keypair):
    e,n = keypair

    # Encrypt the plaintext
    cipher = ''.join([chr(pow(ord(char),e,n)) for char in plaintext])
    # Encode the ciphertext so it's more readable/sharable
    encoded = base64.b64encode(cipher.encode('utf-8'))
    return str(encoded,'utf-8')

def decrypt(ciphertext,keypair):
    d,n = keypair

    # Decode the text to the original format
    decoded = base64.b64decode(ciphertext).decode('utf-8')
    # Decrypt it
    plain = (str(chr(pow(ord(char),d,n))) for char in decoded)
    return ''.join(plain)

def generate_keypair(p,q,e=None):
    n = p * q

    #Phi is the totient of n
    phi = (p-1)*(q-1)

    #Choose an integer e such that e and phi(n) are coprime
    if e is None:
        e = random.randrange(1, phi)

    #Use Euclid's Algorithm to verify that e and phi(n) are comprime
    g = gcd(e, phi)
    while g != 1:
        e = random.randrange(1, phi)
        g = gcd(e, phi)

    #Now find the multiplicative inverse of e and phi to generate the private key
    d = modinv(e, phi)

    return ((e,n),(d,n))

#Only run this part if we're not running as an imported module
if __name__ == '__main__':
    p = int(input("Enter prime number p: "))
    q = int(input("Enter prime number q: "))

    public, private = generate_keypair(p,q)

    print("Your public key is the number pair of (e=" +  str(public[0]) + ", n=" + str(public[1]) +").\n")
    print("Your private key is the number pair of (d=" +  str(private[0]) + ", n=" + str(private[1]) +").\n")

    s = input("Enter your message: ")
    encrypted = encrypt(s,public)

    print("Encrypted message: " + encrypted)
    decrypted = decrypt(encrypted,private)
    print("Decrypt: " + decrypted)